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Abstract

Magnetic resonance images are typically displayed as the absolute value of the discrete Fourier transform of the k-space data. How-
ever, absorption-mode images, the real part of the discrete Fourier transform of the data after applying an appropriate phase correction,
have significant advantages over absolute-value images. In a companion paper, the problem of estimating the phase parameters needed to
produce an absorption-mode image when the phase of the complex image varies linearly as a function of position, a situation common in
magnetic resonance images, was addressed. However, some magnetic resonance images have phases that can vary in a complicated, non-
linear, positionally dependent fashion. To produce an absorption-mode image from these data, one must first estimate the positionally
dependent phase, and then use that phase estimate to produce an absorption-mode image. This paper addresses both of these problems
by first using Bayesian probability theory to estimate the constant or zero-order phase as a function of image position, and then the cal-
culations are illustrated by using them to generate absorption-mode images from data where the phase of the image is a nonlinear func-
tion of position.
� 2008 Elsevier Inc. All rights reserved.
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1. Introduction

Phase estimation is important in magnetic resonance
spectroscopy because the spectrum of the data is typically
displayed in absorption-mode. An absorption-mode spec-
trum is the real part of the discrete Fourier transform of
the time-domain data after removing the confounding
effects of phase. To display an absorption-mode spectrum,
both the constant phase (called a zero-order phase) and a
phase that varies linearly with frequency (called a first-
order phase) must be estimated.

Magnetic resonance images are typically displayed in
absolute value mode, rather than in absorption-mode,
because estimating the required phase parameters is very
difficult. As described in [1], absorption-mode images have
significant advantages over absolute value images; these
advantages include: eliminating correlations between the
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signal and the noise, eliminating constant offsets, eliminat-
ing absolute values and increasing the signal-to-noise ratio.
Part of the problem of producing absorption-mode images
was solved by the algorithm presented in [1], an algorithm
that can produce an absorption-mode image from any 2D
magnetic resonance data sets in which the phase varies lin-
early as a function of position in both phase-encode and
readout directions. Linearly varying, positionally depen-
dent phases are common in spin-echo experiments because
the acquisition method tends to remove phase artifacts
arising from inhomogeneous magnetic fields. Thus, the
only phases arising in these experiments are due to center-
ing the peak signal in the middle of the acquisition window,
and these phases vary linearly. However, gradient-echo
acquisition methods do not remove these phase artifacts
and, consequently, the phase in a gradient-echo experiment
can vary in a complicated, positionally dependent, nonlin-
ear fashion.

The effects of these nonlinearly varying phases are illus-
trated in Fig. 1. This T1-weighted, 2D, gradient-echo image
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Fig. 1. T1-weighted, 2D, gradient-echo axial image of the head of an anesthetized rat. Panel a is an absolute value image. Panel b is an absorption-mode
image before any phasing parameters were applied. Panels c and d are the real and imaginary images after applying the linear phasing algorithm [1]. Note
that the image intensity oscillates between positive and negative values in both the real and imaginary images. In a properly phased absorption-mode
image, panel d should contain only noise.
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was acquired at 4.7-T using a 3-cm inner diameter, double-
tuned 23Na/1H birdcage (quad) coil with TE = 0.01 s. The
sample is an anesthetized rat that had undergone lateral
ventricular infusion of a sodium shift reagent. The in-plane
image resolution is 0.31�0.31 mm2, the slice thickness is
1 mm, with TE = 10 ms, TR = 500 ms with a 20� flip angle.
The matrix size was 128 · 128 with a field-of-view of 4 cm
by 4 cm.

This axial image slice was taken through the head. Panel
a is the absolute value image. Panel b is the real part of the
discrete Fourier transform before applying any phasing
parameters. The high frequency oscillations apparent in
this panel are largely caused by the origin of time in the dis-
crete Fourier transform. Panels c and d are the real and
imaginary images that result from applying the linear phas-
ing algorithm described in [1]. The linear phasing algorithm
has removed the high frequency oscillations, but it has left
behind a slowly varying, positionally dependent phase var-
iation that causes the signal intensity to oscillate between
the real and imaginary parts of the image. In a properly
phased absorption-mode image, all of the signal intensity
is in the real part of the image; the imaginary part contains
only noise.

The calculations presented in [1] were for the first-order
phase parameters. A point estimate for the zero-order or
constant phase was given in that paper, but it was not
derived. In this paper, the posterior probability for the
zero-order phase is derived. Interestingly this posterior
probability can be obtained in a compact form from which
the peak and width of the posterior can then be determined
by inspection. Finally, the calculations are illustrated by
using them to generate absorption-mode images from data
where the phase of the image is a nonlinear, positionally
dependent, function of position.

2. The model equation

In Bayesian probability theory, the first step in any
inference is to relate the hypothesis of interest to the avail-
able data. Here, the hypothesis is about the value of the
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phase. This hypothesis is of the form, ‘‘the unknown value
of the phase is h’’. The numerical value of h indexes a series
of hypotheses of this form, and the posterior probability
for h ranks these hypotheses. Low values of the posterior
probability indicate that the numerical value of h is
improbable, while high values indicate high probability
for the hypothesis.

In the problem being solved, the complex data contain a
signal with a positionally varying amplitude with a con-
stant, zero-order phase. No information is available about
the functional form of the signal variation other than the
signal varies reasonably smoothly. If di represents the ith
complex data value, then the data are related to the phase
through a model given by:

di ¼ Ai expf�ihg þ ni ð1 6 i 6 NÞ; ð1Þ

where Ai is the signal intensity or amplitude of the ith sig-
nal value and h is the zero-order phase. The total number
of complex data values is N. In this paper we will refer to
these data values as voxels as if they are MR volume ele-
ments. The number of data values will range from one to
the total number of complex voxels in an image. The quan-
tity ni represents the complex noise. Separating the complex
model into its real and imaginary parts, one has

dRi ¼ Ai cos hþ nRi ð2Þ

for the real data, and

dIi ¼ �Ai sin hþ nIi ð3Þ

for the imaginary data, where dRi and dIi represent the real
and imaginary parts of the complex data, di, and nRi and nIi

represent the real and imaginary parts of the complex
noise. The noise characteristics of the real and imaginary
data are assumed to be the same.

3. The bayesian calculations

Initially, this problem will be solved assuming that the
standard deviation of the noise prior probability, r, is
known. Later this constraint will be relaxed and, if r is
not known, it will be removed using the sum and product
rules. All of the information in the data relevant to phase
estimation is summarized in the posterior probability for
the phase. This posterior probability will be written as
P ðhjrDIÞ, which is read as the posterior probability for
the phase, h, given the standard deviation of the noise prior
probability r, all of the data, D, and the background infor-
mation I. The posterior probability for the phase is com-
puted by applying Bayes’ theorem [2]:

P ðhjrDIÞ ¼ PðhjrIÞP ðDjrhIÞ
P ðDjrIÞ ; ð4Þ

where the prior probability for the phase, P ðhjrIÞ, repre-
sents what is known about the phase before acquiring the
data; the direct probability for the data, P ðDjrhIÞ, is a mar-
ginal probability from which the dependence on the ampli-
tudes has been removed, and P ðDjrIÞ is a normalization
constant. If this probability density function is normalized
at the end of the calculation, one obtains

P ðhjrDIÞ / P ðhjIÞPðDjhrIÞ; ð5Þ

where r was dropped from the prior probability for the
phase, P ðhjIÞ.

The direct probability for the data, P ðDjhrIÞ, is a mar-
ginal probability. Marginal probabilities are those from
which one or more parameters have been removed using
the sum rule of probability theory. In this case, the Ai have
been removed. To proceed, these amplitudes must be rein-
troduced into the direct probability and then removed
using the sum rule. Reintroducing the amplitudes, one
obtains

P ðhjrDIÞ / P ðhjIÞ
Z

dAP ðADjhrIÞ ð6Þ

as the posterior probability for the phase, where an ‘‘A’’
without a subscript is being used to mean the collection
of all of the amplitudes. Applying the product rule, the
right-hand side of this equation may be factored:

P ðhjrDIÞ / P ðhjIÞ
Z

dAP ðAjrIÞP ðDjAhrIÞ; ð7Þ

where PðAjrIÞ is the joint prior probability for the ampli-
tudes. The probability for the data given the parameters
is represented by P ðDjAhrIÞ and is essentially the
likelihood.

The prior probability for h will be assigned as a uniform
bounded prior:

P ðhjIÞ ¼
1

2p if 0 6 h 6 2p

0 otherwise:

�
ð8Þ

When the prior probability for the amplitudes is
assigned, a correlated prior will be used to impose con-
straints on the amplitudes. For example, in a typical gradi-
ent-echo image, the amplitude is a slowly varying function
of position. Consequently, one might want to impose a
condition on the amplitudes that indicates that adjacent
amplitudes are approximately equal. This would be equiv-
alent to assigning a constraint on the first or second deriv-
ative of the amplitude. Such constraints are easily imposed
using Gaussian prior probabilities, and these priors have
maximum entropy for a given value of the constraints.
The amplitude prior will be assigned as a generalized
Gaussian of the form:

P ðAjbrIÞ / r�N exp � b2

2r2

XN

k¼1

XN

l¼1

AkU klAl

( )
; ð9Þ

where the hyperparameter, b, part of I, has been made ex-
plicit. A more general version of this prior that includes
mean-value estimates of the amplitudes could be assigned.
However, for the purposes of this paper, this more general
prior is unnecessary; smoothness constraints, etc., may be
expressed using this simpler form. Also, factors involving
r, but not b, are being tracked, because eventually r will
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be marginalized from the posterior probability for the
phase. The matrix, U kl, specifies how the amplitudes are re-
lated to each other, and the parameter, b, expresses how
strongly this prior information is believed. Note that the
functional form of this prior, writing b=r rather than just
b, is for notational convenience only.

As noted earlier, the noise in the real and imaginary data
have the same noise characteristics and thus can be
assigned using the same noise prior probability. If each
data value is assumed logically independent, then the direct
probability for the data may be written as

P ðDjAhrIÞ /
YN
i¼1

r�2 exp �ðdRi � Ai cos hÞ2

2r2

( )

� exp �ðdIi þ Ai sin hÞ2

2r2

( )
: ð10Þ

Using Eqs. (8)–(10), the posterior probability for the
phase may be written as:

P ðhjrDIÞ /
Z

dAr�3N exp � Q
2r2

� �
; ð11Þ

where several constants that cancel when this distribution
is normalized have been dropped. The quantity, Q, is given
by

Q �
XN

k¼1

XN

l¼1

b2AlUklAk þ
XN

i¼1

ðdRi � Ai cos hÞ2

þ
XN

i¼1

ðdIi þ Ai sin hÞ2: ð12Þ

The first term on the right-hand side of this equation comes
from the prior probability for the amplitudes; the second
and third terms come from the direct probability or likeli-
hood. Expanding, this quadratic, one obtains

Q � 2Nd2 � 2
XN

i¼1

AiT i þ
XN

l¼1

XN

k¼1

AlV klAk; ð13Þ

where the T i are given by

T i � dRi cos h� dIi sin h: ð14Þ

The interaction matrix, V kl, is given by

V kl � dkl þ b2U kl; ð15Þ

where dkl is a Kronecker delta function. The mean-square
data value is defined as

d2 � 1

2N

XN

i¼1

ðd2
Ri þ d2

IiÞ: ð16Þ

The functional form of Q in Eq. (13) is a quadratic in Ai,
so the integrals over Ai in Eq. (11) are Gaussian quadrature
integrals. Such integrals are easily evaluated, and only the
results are given:
PðhjrDIÞ / r�2N exp � 2Nd2 � Nh2ðhÞ
2r2

( )
; ð17Þ

where

h2ðhÞ ¼ 1

N

XN

i¼1

ÂiT i ð18Þ

is the mean-square projection of the data onto the model
for a given h, and is a sufficient statistic for estimating
the phase, h. The Âi are the estimated amplitude of the im-
age voxels and are given by the solution to

XN

l¼1

V klÂl ¼ dRk cos hþ dIk sin h: ð19Þ

For convenience, this is written as

Âl � âl cos hþ b̂l sin h; ð20Þ

where âl and b̂l are given by the inverse of the V kl matrix
dotted into the column vectors represented by the data,
dRl and dIl, respectively.

The sufficient statistic,

h2ðhÞ ¼ 1

N

XN

i¼1

½dRiâi cos2 h� ðdRib̂i þ dIiâiÞ cos h sin h

þ dIib̂i sin2 h�; ð21Þ

can be simplified by using

cos2 h ¼ 1

2
ð1þ cos 2hÞ; ð22Þ

sin2 h ¼ 1

2
ð1� cos 2hÞ ð23Þ

and

sin h cos h ¼ 1

2
sin 2h ð24Þ

to replace the sines and cosines appearing in Eq. (21) by a
single cosine:

h2ðhÞ ¼ Y þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
W 2 þ X 2

p
cosð2hþ wÞ

2N
; ð25Þ

where the constants, W ;X ; Y and w, are given by

W �
XN

i¼1

ðâidRi � b̂idIiÞ; ð26Þ

X � �
XN

i¼1

ðâidIi þ b̂idRiÞ; ð27Þ

Y �
XN

i¼1

ðâidRi þ b̂idIiÞ ð28Þ

and

w � tan�1 X
W

� �
: ð29Þ
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Substituting the sufficient statistic, Eq. (25), back into
the posterior probability for the phase, Eq. (17), one
obtains

P ðhjrDIÞ/ r�2N

� exp �4Nd2�Y �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
W 2þX 2

p
cosð2hþwÞ

4r2

( )
;

ð30Þ
where a number of constants that cancel when this distribu-
tion is normalized have been dropped.

If the standard deviation of the noise is known, as it
often is in images, then this equation may be further
simplified:

P ðhjrDIÞ / exp

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
W 2 þ X 2

p
cosð2hþ wÞ

4r2

( )
: ð31Þ

In this form, it is obvious that the peak of this distribution
occurs when the argument of the cosine is zero,

hMax ¼ �
w
2
: ð32Þ

Noting this maximum, one can Taylor expand about this
maximum to second order and use the width of this Gauss-
ian approximation as an estimate of the width of the pos-
terior probability to obtain

hest ¼ �
w
2
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8r2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

W 2 þ X 2
p

s
ð33Þ

as the peak ± standard deviation estimate of the phase.
This estimate can be calculated directly without ever hav-
ing to evaluate the posterior probability. Experience with
this approximation indicates that even at the modest sig-
nal-to-noise ratio of 3:1 and one complex data value, this
approximation differs from the exact calculation by less
than 10 percent. When the number of complex data values
is greater than one, this estimate of the phase is very differ-
ent from tan�1ðI=RÞ, where R and I are the real and imag-
inary parts of the complex image. It is very different
because this formula uses multiple data values to estimate
the phase. However, when only a single data value is ana-
lyzed, Eq. (33) reduces to tan�1ðI=RÞ, even when b is not
zero. Eq. (33) looks very different from tan�1ðI=RÞ, but
that difference is superficial and is caused by the introduc-
tion of the half-angle formulas used to obtain a single co-
sine term.

This approximation, Eq. (33), assumes that r is known,
and this may or may not be the case. Using the posterior
probability for the phase given the standard deviation of
the noise, Eq. (30), the sum and product rules can be used
to remove the the dependence on r:

P ðhjDIÞ /
Z

drP ðrhjDIÞ ¼
Z

drPðrjIÞP ðhjrDIÞ: ð34Þ

If the prior probability for the standard deviation, P ðrjIÞ,
is assigned using a Jeffreys’ prior, 1=r, then the indicated
integral may be evaluated and the posterior probability
for the phase may be written as

P ðhjDIÞ / ½4Nd2 � Nh2ðhÞ��N

¼ ½4Nd2 � Y �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
W 2 þ X 2

p
cosð2hþ wÞ��N

: ð35Þ

As shown in [3], around the location of the maximum, this
is approximately

P ðhjDIÞ � exp

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
W 2 þ X 2

p
cosð2hþ wÞ

4hr2i

( )
ð36Þ

and one would estimate

hest ¼ �
w
2
�

ffiffiffiffiffiffiffiffiffiffiffi
8hr2i

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
W 2 þ X 2

p ð37Þ

where the standard deviation of the noise prior probability
has been replaced by (essentially) the mean-square residual:

hr2i ¼ N
2N � 2

½2d2 � h2ðhMaxÞ� ð38Þ

where this estimate assumes N is greater than 2.

4. Results and discussion

These calculations will be illustrated using the complex
image shown in Fig. 1. Two examples will be given and
both examples use only a single complex data value, so
N ¼ 1. The first example will illustrate the full posterior
probability and the Gaussian approximation. The second
example will illustrate how the calculations can be used
to generate absorption-mode images. In this first example,
two different complex data values will be selected, one from
a region where there is signal, and one where there is only
noise. When a single voxel is used as the data, only the
width of the posterior probability depends on U kl; the peak
is independent of both Ukl and b. In the following exam-
ples Ukl ¼ 1 and b ¼ 0:01. Fig. 2a is the posterior proba-
bility for the phase computed from a voxel having signal-
to-noise ratio of approximately 40:1; here, the posterior
probability and the Gaussian approximation are indistin-
guishable. Panel b is the posterior probability (solid line)
and the Gaussian approximation (dotted line) computed
from a voxel that contained only noise. For this voxel,
the posterior probability has a shallow peak near 60� and
the posterior extends over the entire nonaliased parameter
range. The Gaussian approximation shares this peak, but
has a standard deviation that is too small and consequently
falls off too quickly. When signal-to-noise ratios are about
3:1, the Gaussian is narrower than the full distribution but
is a good approximation to the full distribution. For all
practical purposes, it is only when a voxel contains only
noise that the full distribution is needed. However, this case
is almost irrelevant because there is no phase to estimate.

Next the generation of an absorption-mode image is
illustrated using the complex image shown in Fig. 1. To
generate an absorption-mode image, each complex voxel
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Fig. 2. Panel a is the posterior probability for the phase h computed from a single voxel taken from the complex image shown in Fig. 1. In this voxel the
signal-to-noise ratio is roughly 40:1 and the Gaussian approximation given in Eq. (33) is indistinguishable from the full posterior probability. Panel b is the
posterior probability computed from a voxel containing only noise; here the Gaussian approximation (dotted line) is not a good representation of the full
posterior (solid line).
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in the image must be multiplied by expf�iĥg, where ĥ is an
estimate of the phase in a given voxel. This phase is called a
point estimate because it replaces the full posterior proba-
bility by a single value. One might think that generating an
absorption-mode image is as simple as taking
ĥ ¼ tan�1ðI=RÞ as the point estimate on a voxel by voxel
basis, where ‘R’ and ‘I’ are the real and imaginary parts
of the complex image. This phase, ĥ, is identical to the max-
imum likelihood estimate of the phase using an image voxel
model of the form A expfiĥg and for a single complex data
value is identical to the estimate given in Eq. (33) even
when an informative Gaussian prior probability is
assigned. If one multiplies this complex image voxel by
expf�iĥg, then

Phased image voxel ¼ ðRþ iIÞ � expf�iĥg: ð39Þ

Separating this expression into its real and imaginary parts
one has

Real part ¼ R cos ĥþ I sin ĥ ð40Þ

and

Imaginary part ¼ �R sin ĥþ I cos ĥ: ð41Þ

But

cos ĥ ¼ Rffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 þ I2

p and sin ĥ ¼ Iffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 þ I2

p ; ð42Þ

so the expressions for the real part of the complex voxel
can be simplified:

Real part ¼ R2 þ I2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 þ I2

p ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 þ I2

p
; ð43Þ

and similarly the imaginary part is given by
Imaginary part ¼ �RIþ IRffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 þ I2

p ¼ 0: ð44Þ

Using the phase, ĥ ¼ tan�1ðI=RÞ, does not produce an
absorption-model image; rather it is identical to computing
an absolute value mode image. Consequently, if one wishes
to produce an absorption-mode image, at the very mini-
mum, some other point estimate of the phase must be used.

As noted, to remove the effects of the nonlinear phase in
any given voxel one must multiply the complex unphased
voxel by expf�iĥg, where ĥ is a point estimate of the phase.
The difficulty in generating an absorption-mode images lies
in choosing this point estimate. Often, in parameter estima-
tion problems, one chooses this point estimate as the value
that maximizes the posterior probability. However, using
this maximum for every voxel results in an absolute value
image rather than an absorption-mode image. The solution
is to sample the posterior probability for the phase for each
voxel and thus preserve the desired noise properties
expected from an absorption-mode image. Additionally,
one cannot arbitrarily choose the phase in such a way as
to make the amplitude in the real channel positive. This
approach introduces a constant offset into the image, and
this is most definitely not desired. Indeed, in a perfectly
phased image, the noise in both the real and imaginary
parts of the images should have zero mean and have the
same noise standard deviation. Deviations from these con-
ditions introduce artifacts into the images.

For any given voxel, the posterior probability for the
phase summarizes all of the information in the data about
the phase. If a sample is drawn from this posterior proba-
bility, then this sample can be used to generate an absorp-
tion-mode voxel. On average, any given sample from the
posterior is as good a candidate point estimate as any
other, because on average it reflects everything known
about the phase. For a high signal-to-noise ratio voxel,
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the posterior probability can be sampled using the Gauss-
ian approximation, Eq. (33), and that sample used to pro-
duce an absorption-mode voxel. High signal-to-noise ratio
voxels should be phased so that they have positive real
amplitudes.

However, high signal-to-noise ratio voxels are not the
problem. The problem is what to do about low signal-to-
noise ratio voxels. If a sample of the phase were drawn
from the posterior probability shown in Fig. 2b, virtually
any value of the phase could be generated for that low sig-
nal-to-noise ratio voxel, implying that the resulting real
phased image could have either positive or negative inten-
sity. Consequently, the positivity condition used on high
signal-to-noise ratio voxels cannot be arbitrarily applied
to low signal-to-noise ratio voxels; doing so would neces-

sarily introduce a constant offset. A criterion must be
established that indicates when to apply the positivity con-
dition. From a Bayesian perspective, this is a model selec-
tion calculation with a decision.

When the phase estimation calculations given in this
paper were first implemented to produce absorption-mode
images, determining the voxels to which the positivity con-
dition should be applied was done using a model selection
calculation. In that calculation, two models were defined: a
‘‘signal’’ model and a ‘‘no signal’’ model. The signal model
was the model used in this paper, and the no signal model
contained only noise. The posterior probability for these
models was then computed. For the signal model, this cal-
culation is the same calculation given in this paper with one
additional integration over the phase. The calculation of
the logarithm of the posterior probability for the no signal
model consists of little more than computing the mean-
square data value. However, it quickly became apparent
that the resulting model selection calculation, when only
a single complex data value is used, thresholded voxels
based on the signal-to-noise ratio. The posterior probabil-
ity for the signal model was always 1 for voxels with signal-
to-noise ratio larger than about 3:1; consequently, these
voxels were always phased with the positivity condition.
However, when the signal-to-noise ratio dropped below
about 2.5:1, the posterior probability for the no signal
model was always 1, and these voxels were always phased
without the positivity condition. It was only voxels in the
very small signal-to-noise range of 2.5:1–3:1 where a deci-
sion had to be made. In test implementations of these cal-
culations, these voxels were phased by using a Markov
chain Monte Carlo simulation to draw a sample from the
posterior probability for the model. If that sample’s model
was a signal model, then the voxel was phased with the pos-
itivity constraint, and if the sample’s model was a no signal
model, then the voxel was phased without the positivity
constraint. Thus, the distribution of models used to phase
the image was the posterior probability distribution for
the model.

These additional calculations increased the complexity
of the resulting algorithm, slowed it down and added noth-
ing to the resulting images that could not be achieved by
simply thresholding the voxels at signal-to-noise ratio 3:1.
Thus, in the current algorithm, all of the voxels having sig-
nal-to-noise ratios less than 3:1 are phased without the pos-
itivity constraint, and those above are phased with the
positivity constraint. In both cases, the point estimate of
the phase is drawn from an approximation. For voxels hav-
ing signal-to-noise ratio greater than 3:1 the Gaussian
approximation, Eq. (33), is used. The no signal voxels by
definition have no signal and are phased using a sample
drawn from a uniform distribution.

Fig. 1 illustrates what happens when the linear phasing
algorithm, described in [1], is applied to a gradient-echo
image. A strong signal persists in the imaginary image,
Fig. 1d. Fig. 3a and b are the real and imaginary parts of
this same image phased using samples drawn from the pos-
terior probability for the phase, Eq. (31). To generate this
image, the noise standard deviation was estimated from a
region of the image in which there was no signal. This
value, 0.038, was then used in the Gaussian approximation,
Eq. (33), to draw samples from the posterior probability of
the phase. Note that the real image, Fig. 3a, contains the
absorption-mode image plus noise. The mean value of this
noise, computed from roughly 4K voxels above the ani-
mal’s head that contained only noise, was 0.002. This
region (not shown) was also used to generate the histogram
shown in Fig. 3c. The standard deviation of the noise in
this region was 0.037. The imaginary image Fig. 3b con-
tains only noise. Its mean was 5� 10�5 and its standard
deviation was 0.038; these values were computed from all
16K samples in the imaginary image. These same 16K sam-
ples were also used to generate the histogram shown in
panel Fig. 3d.

The mean and standard deviation of the intensities of
the 16K points in the imaginary image, Fig. 3b, are essen-
tially the same as those in the noise region above the
mouse’s head, Fig. 3a, and in the original unphased image
Fig. 1b. Generating an absorption-mode image has moved
the signal intensity to the real part of the image, leaving
only noise in the imaginary part. The noise level remains
unchanged because each complex voxel was multiplied by
expf�iĥig, which is a rotation, and rotations do not change
the magnitude of a vector, in this case the complex voxel
values. However, any two runs of this nonlinear phasing
algorithm using a different random number seed will pro-
duce slightly different absorption-mode images from the
same data set. The reason for this is that this absorption-
mode image is the image produced from one Markov chain
Monte Carlo sample from the joint posterior probability
for all of the phases in the image and different samples from
this posterior will produce different images, each equally
consistent with what is known about the phase.

Finally, a map of the estimated phases is shown in
Fig. 4. This map was unwrapped using the Laplace tech-
nique described in [4]. The image phase map is important
in magnetic resonance imaging because it is essentially a
map of the inhomogeneous magnetic field and can be used
to improve the image quality. Additionally, some magnetic



Fig. 3. Panel a is the real image generated by the nonlinear phasing algorithm. The imaginary image b is essentially noise. Panel c is a histogram created
from roughly 4K voxel in a region that contained no signal (area above the mouse head, not shown). The mean in this region was 0.002 and the standard
deviations was 0.037. Panel d is a histogram created from the entire imaginary image, 16K counts. The mean was 5� 10�5 while the standard deviation
was 0.038.

Fig. 4. The nonlinear phasing routine produces an unwrapped map of the
phase of the image. Because the linearly varying phase was removed using
the algorithms described in [1], this phase map is of deviations from linear.
The unwrapping is done using the solution to the Laplace equation
described in [4]. This phase map, left, is important in magnetic resonance
imaging because, among other things, it is essentially a map of the
inhomogeneous magnetic field and can be used to improve the image
quality.
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resonance imaging experiments encode the information of
interest in the phase.
5. Summary and conclusions

The calculation presented in [1] for the first-order phase
parameters and the calculation presented here for the zero-
order phase parameters enable one to phase most magnetic
resonance images. When the phases vary linearly, as in
spin-echo experiments, the linear phasing algorithm can
be used to phase the images in n log n time. On a Sun Ultra
60 workstation, the time required to produce an absorp-
tion-mode images using the linear phasing algorithm for
a typical 128 · 128 image is less than one second. When
the phases vary nonlinearly, as they do in gradient-echo
experiments, the calculation presented in this paper can
be used to phase the image in n time. Note that the calcu-
lations presented in this paper are image domain calcula-
tions. Consequently, the algorithm described in this paper
operates on the images produced by the linear phasing
algorithm. Thus, the slow steps in generating an absorp-
tion-mode images are removing the effects of the linear
phase and unwrapping the phase maps, both of which
require a fast discrete Fourier transform.

Both the calculations presented in [1] and the calcula-
tions presented here are more general than they first
appear. In [1], the calculations were all described in terms
of estimating the first-order phase parameter in a complex
data set. However, those calculations could just as easily
have been described as estimating the frequency of a com-
plex sinusoid that has a time (or positionally) varying
amplitude. In this paper, the calculations were described
in a way that naturally leads one to use these calculations
to generate absorption-mode images. However, the calcula-
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tions themselves are general and apply to any complex data
set in which a single constant phase must be estimated.
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